新闻资讯

18

2021-12

二类压力容器设计中的注意点

       分汽缸是通常可接近的1类或2类压力容器,分汽缸有一个蒸汽入口,通常与锅炉连接,有N个蒸汽出口。蒸汽出口的数量与过程和用途有关。   分汽缸的设计主要考虑如下:a.由于入口和出口很多,设计时应考虑这些端口之间的距离是否合适,并且两个端口需要保持距离,以防止安装两个端口时阀门相互接触。b.分汽缸由几个筒段组成,另外,从制造的角度看,开口应与环形焊缝错开,并应保持距离,以确保开放焊缝和环形焊缝的热影响区不重叠。c.分汽缸是一个水平容器,因此支撑件的位置不能随意布置。为了要求,在设计支架的位置时,支架的位置应尽可能靠近头部,并且应利用头部到支架的部分。d.将两个支架设计为固定,另一个设计为滑动。如果需要固定孔,则需要考虑对单个孔和其他孔进行固定。开口会影响该孔,并且两个相邻开口的之间的距离不应小于两个直径之和的两倍。   储气罐设计   储气罐也是常见的I类和II类压力容器,设计储气罐时,应考虑以下问题:无论外壳材料是16MnR还是Q235-B,通常,如果它是由Q235-B材料制成,计算圆柱体的厚度如果超过10mm,则需要将其改为16MnR材料,这样会更加经济合理。如果圆柱体由多个圆柱体部分组成,则需要考虑圆柱体直径和长度之间的关系,钢板宽度通常为1500mm或1800mm或2000mm。如果圆柱体的长度不同于钢板宽度的倍数,则需修改圆柱体。   直径的设计应使圆柱体的长度尽可能接近钢板宽度的倍数。如果储气罐是垂直的,则应在设计图上注明:在水平位置进行水压测试时,测试压力应为垂直位置,测试压力加上液柱的静压力。   脱溶机设计   脱溶机设计是一种油脂设备,用于去除油饼中的溶剂。在设计脱溶机时,应根据工艺要求确定脱溶机的直径以及所需的预分层和干燥层数,然后进行计算。预分层,干燥筒的厚度和底部的厚度板,预分层,干燥层和去溶层结构应使用支撑结构,即在两个底板之间添加均匀分布的拉杆。这是因为计算出的底板厚度薄,并且可以大大使底板重量变轻。由干层和脱溶剂层组成,减轻了底板的重量,不可避免地使预脱层变少,干燥层和脱溶剂层的重量,从而可以减轻整个设备的重量。这样,可以节省材料并减少成本。为了减少成本也易于安装。如果对平盖结构使用通用的计算公式,则所计算的厚度会大得多,这会浪费材料,增加成本,并且也给安装带来不便。另外,脱溶层上底板要开均布分布的蒸汽小孔,,蒸汽小孔的数量根据工艺定, 预脱层、脱溶层、烘干层与搅拌装置之间要注意密封。   长管蒸发器设计   长管蒸发器也是一种油脂设备,它是一种热交换设备,用于分离混合油中的溶剂。要设计长管蒸发器,先要根据过程确定的换热面积计算出长管蒸发器的直径和长度,然后计算长管蒸发器的管板厚度,并设计换热的布置管。换热管的布置包括等边三角形布置,正方形布置和组合布置,等边三角形排列是常用的,可以在管板面积上布置大数量的管,并且方便划刻管板并占据孔,但是管外部的直通道太窄而无法机械清洁。在需要在壳体侧进行机械清洁的地方,通常使用正方形布置,但是在相同管板面积上,正方形布置的管数比等边三角形布置少10%到14%。在多通道热交换器中,通常在每个通道中使用等边三角形布置,并且在每个通道之间使用正方形布置,这称为组合安排。   长管蒸发器采用等边三角形布置,管与管板之间的连接,管与管板之间的连接一般分为膨胀节,焊接、膨胀焊接组合,膨胀节加工简单,维修管道方便,并且焊接可以使密封性能好;连接强度高,拔出力强,管板孔和管端的加工要求低,管板和管材的要求低;管板厚度允许小,焊接方便,高温高压下经常使用膨胀焊,连接接头反复遭受热冲击,热变形和热腐蚀,对于长管蒸发器,我们选择焊接结构。

2021-12-18

18

2021-12

焊接压力容器耐热钢时怎么进行热处理

锅炉压力容器常用耐热钢的焊接热处理工艺主是焊前、焊中、焊后的加热处理。   一,预热温度和层间温度的控制   但在设备制造过程中还要结合实际选用。对厚壁高拘束度的部位(如大型插入式接管焊缝),预热和层温要偏上限;若要求焊接接头具有较高韧性,在确保不出现裂纹的前提下,应取较低的预热和层温。此外,预热和层间温度必须低于钢材的Mf点(马氏体转变结束点),否则当焊件经SR处理后,残留奥氏体可能发生马氏体转变,其中过饱和的氢逸出会促使钢材开裂。为此,对12Cr2Mo1R的预热和最高层温应低于300℃。   钢材下料进行热切割时,类似焊接热影响区的热循环,切割边缘的淬硬层可能成为随后钢材卷制或冲压时的裂源,因此,也应适当预热。加氢反应器的元部件,经热切割后,切口热影响区经机加工去除硬化层,所有焊接坡口均需机加工制备且经磁粉探伤检测合格。   二,后热和焊后热处理   这类钢冷裂倾向大,导致产生裂纹的影响因素中,氢的影响居首位,因此,焊后(或中间停焊)必须立即消氢。一般说来这类钢制容器的壁厚、刚性大、制造周期长,焊后不能很快进行SR处理,为防裂并稳定构件尺寸,在主焊缝(或主焊缝和壳体接管焊缝)完成后进行比最终焊后热处理温度低的中间热理。这类钢的后热一般为300~350℃,也有少数单位取350~400℃的。   中间和最终热处理规范随钢种、结构和制造厂的经验而异,一般中间热处理温度为(620~640℃)±15℃;最终的焊后热处理温度为(670~690℃)±15℃。热处理的时间随器壁厚度而异。   SR处理对碳钢或淬硬倾向较低的钢,主要是消除应力,通过600~650℃的热处理可获回火组织,也消除了残余应力。对耐热钢中间热处理的主要目的是消除应力;而最终热处理的主要目的是通过高温回火获得所需要的组织结构(使淬火组织分解,碳化物析出,聚集并转变为回火索氏体),与此同时也消除了残余应力。

2021-12-18

18

2021-12

压力容器压力管道检验中裂纹及预防措施

      1检验内容以及方法   2在压力容器的使用过程中产生裂纹问题   3压力容器管道裂纹的预防措施   3.1原材料、零件的检验   3.2强化管理生产制作环节   3.3提高检验效率  

2021-12-18

18

2021-12

27

2021-11

压力容器厂家告诉你压力容器制造为什么多是圆筒形

  压力容器厂家告诉你压力容器制造为什么多是圆筒形           压力容器是一种密闭设备,通常由气缸、封头、法兰、密封、开口连接管、支架等内部零件组成,能够承受工业生产中常用的压力。此外,压力容器的种类也很多。按其分类,可分为球形容器、圆柱形容器、矩形容器和组合式四种容器。但是说到常用的压力容器,它们是圆柱形的。知道为什么吗?        圆柱形压力容器之所以在工业生产中普遍使用,其实是在问“圆柱形压力容器的优点”。然而,在正式描述原因之前,我们需要了解四种压力容器的特点:圆柱形容器、球形容器、矩形容器和组合容器。 (1)球形容器又称球罐,壳体为球形,其优点是受力均匀。壁厚相同时,球罐的承载能力较高。在相同的体积条件下,球形容器的表面积很小,由于壁厚,表面积很小,一般比圆柱形容器节省大量的钢材。但缺点是制造结构比较复杂,制造成本较高,如果在工业生产中普遍使用,会大大增加企业的成本。        (2)矩形容器,也称方形容器,与圆柱形压力容器相比,具有良好的稳定性,适用于储存或运输不同的粉末材料。但矩形容器的设计成本比圆形容器高,方形容器容易变形造成事故。因此,目前工业生产中使用的矩形容器很少。        (3)圆柱形压力容器的基本结构为气缸盖、喷嘴、人孔和托架。        但是,我们也需要注意一点,圆柱形压力容器可分为单层型和组合型两大类,单层圆筒是由一整块材料组成的,因此只有一层壁(不包括防腐层) ,其优点是结构简单,复合型圆筒是由两层或两层以上的非连续材料组成的,其耐腐蚀性较好。        好了,以上就是“圆筒形压力容器在工业生产中普遍使用的原因”的解释。希望大家在选择合适的压力容器使用之前能了解一下,这样工业生产活动才能顺利进行。

2021-11-27

27

2021-11

压力容器使用过程中的状况检查与维护

通过几年来对近300台在用压力容器进行检验的情况看,有相当部分属于20世纪80年代制造并投入使用的产品,普遍存在着资料不全、制造质量低劣、安全状况不良的问题,检验发现存在裂纹,未焊透咬边、错边、夹渣、气孔等超标缺陷数不胜枚举,这些超标缺陷,有些是制造时产生,有些则是在使用过程中产生或扩展的,它们是威协压力容器安全运行的重要隐患,切不可掉以轻心。因此在国家加强对压力容器设计和制造严格控制的同时,严格进行对在用压力容器的检验和缺陷处理,才是保证压力容器安全使用的关键。     国家质检总局颁发的《压力容器安全技术监察规程》、《在用压力容器检验规程》对在用压力容器的检验、缺陷处理和安全使用管理作了具体规定,明确了必须核定压力容器的安全状况等级,才可对压力容器进行登记注册,并对不同安全状况等级的压力容器提出了不同的使用规定,如其中规定了“安全状况等级核定为4级的在用固定压力容器,办理注册手续后,允许在满足检验报告所限定的使用条件和使用检验周期内继续使用,但不发证,经妥善处理安全状况等级达到3级以上后再发使用证”。由此可见,对检验后经缺陷评定确定的超标缺陷(尤其是安全状况等级核定为4级的在用压力容器)进行妥善的处理、修复,还可改善压力容器的安全状况等级,以确保压力容器能在规定的操作条件下,在法规规定的检验周期内安全使用,并对于在用压力容器的合理使用,提高其经济性都有较大的作用。     “在用压力容器的检验和缺陷处理,是通过检验判断其能否安全可靠地使用到下一个检验周期,而不是为了使其恢复到现行(或原来的)设计、制造标准。对在用压力容器的检验和缺陷处理不能完全套用制造标准”。就是说,要从实际情况出发,正确运用理论知识和实践经验,分析和总结事故发生规律,同时要考虑安全可靠与经济合理,对具体问题作具体分析处理,即应掌握“合于使用”的原则,通过分析,消除那些危及安全的超标缺陷,以提高压力容器的安全状况,达到能安全可靠地使用至下一个检验周期的目的。     在处理消除危害缺陷时,我们认为,首先调查容器质量状况与使用情况,弄清该缺陷是制造遗留,还是使用中产生;对于受压元件材质不清的容器,必要时进行化学成份分析,硬度测定和金相分析,为缺陷修复时的选材及制定合理的修复工艺提供依据,做到对症下药,选择缺陷处理的有效办法,以致可以直接判定缺陷修复的可能性与价值。     修复方法要根据不同缺陷的具体情况而定,应依据“合于使用”的原则,一般说,可修可不修的缺陷,即没有什么危害的缺陷尽量不要修,打磨处理能满足要求的就尽量不用补焊,对于裂纹的修复应慎重。有关专业刊物中推荐如下相应的修复方法:(1)打磨消除法:这种方法适用于在用容器的表面缺陷,如表面裂纹、凹坑、电弧擦伤、弧坑、机械损伤、未焊透、未熔合、焊缝气孔、焊缝咬边、工卡具焊迹等的处理。表面缺陷要经打磨完全消除,并与母材或焊缝成圆滑过渡,侧面斜度不大于1∶4。     (2)补焊修复法:补焊修复可消除危害安全的超标缺陷,改善安全状况,以利在用容器的安全使用,它是一种常用的重要修复方法,然而补焊修复较为费工时,如果补焊不当,还可能带来新的不稳定因素,如产生新的裂纹缺陷,接头的组织性能恶化,产生新的焊接应力等,某化工厂就曾因挖补内部气孔缺陷修坏了一台200m 3球罐,因此,对于在用容器缺陷补焊修复一定要慎重。     (3)贴补修复法:《容规》中已明确规定,不允许对主要受压元件进行贴补修理。而这种方法一般仅作为无法停产的容器修复时的应急措施,不可作为一种安全可靠的修复方法应用于停车时的修复。此法用于面积较大、分散、且逐处补焊有难度的局部缺陷修补。如大面积点蚀,局部均匀减薄,表面多处微裂等,且该在用容器工作应力水平较低,并能作定期检验,同时监控便利。它可用“贴板”覆盖缺陷,然后周边进行角接补焊,必要时也可在“贴板”上钻小孔,孔外装上阀门以便检查器壁缺陷的发展情况。     如何保证修复质量是我们共同关注的焦点,按《条例》《容规》要求,我们以为:承担修理单位其修复方案应征求使用单位意见,并经单位技术负责人批准,呈报主管部门和同级监察部门备案,必要时当地的锅炉压力容器监察部门应对容器的修复进行监督。     对于修复后的检验,可作如下规定:①打磨消除表面缺陷后,需经外观与表面探伤检查,确定缺陷完全消除,且打磨侧面应与母材或焊缝成圆滑过渡,侧面斜度应不大于1∶4。     ②缺陷补焊修复后,应对补焊部位进行外观检查和无损探伤检查,必要时还应进行硬度测定检查及压力试验与气密性试验。补焊质量应符合《容规》等的有关要求。修复质量的检验结果应详细整理,经技术负责人审鉴后,归入该容器质量档案。现仅简述一检测实例:大港油田某厂一台70m 3原油电脱水器,是1987年由某金属结构厂制造,连续运行14年至2001年首次停车全面检验,该设备图纸及质量证明文件和设计参数无处可查。     检验过程中发现以下主要缺陷:①壳体对接纵、环焊缝X射线探伤拍片存在未焊透等缺陷,不合格片率100%;②经超声波探伤复查,未焊透主缺陷全部位于焊肉之间部位,距母材表面深5~8mm处;③人孔及各接管采用外表侧单面填角焊,壳内成型未焊透;④封头拼接焊缝与筒体封头对接焊缝棱角、错边缺陷最大值11.0mm;⑤实测筒体最小壁厚11.2mm,封头最小壁厚12.1mm。     根据以上缺陷表现出是先天制造缺陷,已无修理价值,正常情况要做报废处理,但是使用单位介绍购置这样一台设备需要70万元,且制造周期长,一旦报废直接影响企业的生产。急企业之所需,为了尽可能发挥设备潜能,结合实际做了以下分析和工作:①该设备在0.4MPa压力连续运行14年,现检验未发现缺陷扩展。     ②进行强度校核,结果筒体与封头的实测最小壁厚仍能满足压力需求(此时焊缝系数为0.5)。     ③按照《容规》有关耐压试验条款规定,水压试验也未发现渗漏和异常现象。     ④对拼接焊缝棱角错边缺陷而形成的结构形状突变,破坏了材料的连续性,在尖角、错边位置会产生峰值压力,该处的一次压力和二次弯曲应力共同叠加组成应力峰值。理论上由于其应力区分布很小与容器壁厚为同一量级,在运行中虽不会引起容器结构明显变形,但组合形成的局部高应力却能导致容器疲劳破坏和脆性破坏。但实际调查发现生产工艺系统中电脱水器工作压力稳定,基本无承受交变载荷作用的问题,不易发生疲劳破坏,且水压试验后经表面磁粉探伤复查没有发现裂纹缺陷。     ⑤从电脱水器整体强度考虑,最恶劣部位是封头与筒体对接焊缝区域存在的二次应力,即筒体与封头相互约束面而产生的正应力和剪应力,这一局部将发生塑性变形,根据“安定准则”,电脱水器在运行中二次应力值不许大于材料屈服极限的两倍,即遵循σ≤2σst=3[σ]其求证结果σ值略大于2σst,足见局部强度不够,需要采取加强措施。     基于以上分析和工作的基础,做出如下检验结论:①封头与筒体对接焊缝区采取外部钢带加固;壳体开孔接管部内侧补焊消除未焊透缺陷;②运行压力不得超过0.4MPa;③校定安全阀开启压力为0.4MPa并合乎设备排量要求;④只有满足上述三条件方可投用,3年内建议更新。

2021-11-27

< 1...456...12 >